

Institute of Automation Chinese Academy of Sciences

中国科学院自动化研究所

A Spoken Dialogue System based on FST and DBN

Lichun Fan, Dong Yu, Xingyuan Peng, Shixiang Lu, Bo Xu

Institute of Automation Chinese Academy of Sciences

Outline

- Task
- Problems in NLU
- FST in NLU
- Problems in DM
- DBN in DM
- The whole system
- Conclusion

Outline

- Task
- Problems in NLU
- FST in NLU
- Problems in DM
- DBN in DM
- The whole system
- Conclusion

What is Spoken Dialogue System

What is Spoken Dialogue System

Spoken Dialogue System

- The Spoken Dialogue System
 - The dialogue has more than one round
 - ► The dialogue is on the same topic
 - he dialogue context is interconnected

Spoken Dialogue System

- The Spoken Dialogue System
 - The dialogue has more than one round
 - ► The dialogue is on the same topic
 - he dialogue context is interconnected
- An Example
 - Ticket reservation system

Architecture of a Spoken Dialogue System

The modules we focus

Outline

- Task
- Problems in NLU
- FST in NLU
- Problems in DM
- DBN in DM
- The whole system
- Conclusion

NLU module function

- map user utterance into Dialogue Act
- extract the additional information in user utterances

NLU module function

- map user utterance into Dialogue Act
- extract the additional information in user utterances
- Example
 - "what time does the next train left to shanghai?"
 - ▶ Dialogue Act : request (time=?)
 - Additional information: To_city=shanghai

From_city= DEFAULT

Vehicle=train

Problems in NLU

- Inevitable recognition errors of the ASR
 - Not concern in this paper
- Omission is serious in spoken language
- Traditional methods are unsuitable for ASR transcriptions

Why FST

- Powerful in delivering the sequence information
 - Words sequence

- powerful in tolerance of ASR errs
 - Whole sentence

Outline

- Task
- Problems in NLU
- FST in NLU
- Problems in DM
- DBN in DM
- The whole system
- Conclusion

FST

Corpus:

我能兑换美元么请问可以兑换欧元吗我能在这购买港元吗

FST

Corpus:

我能兑换美元么请问可以兑换欧元吗我能在这购买港元吗

Give information (currency_buy_type) and request (buy=?)

FST model

FST model

Decode

Experiments on FST model

	${\it classification}$	attribute-value pairs extraction
	precision	precision recall F-measure
action-group FST model	92.75%	92.05% $87.57%$ $89.75%$
keyword matching	90.58%	96.25% 83.24% 89.27%

Experiments on FST model

	classification	attribute-value pairs extraction
	precision	precision recall F-measure
action-group FST model	92.75%	92.05% $(87.57%)$ $89.75%$
keyword matching	90.58%	96.25% 83.24% 89.27%

Outline

- Task
- Problems in NLU
- FST in NLU
- Problems in DM
- DBN in DM
- The whole system
- Conclusion

Problems in DM

- The objective function
 - Least dialog turns?

- The train data
 - Need a large amount of labeled data?

Problems in DM

- The objective function
 - Least dialog turns?

What time will the plan arrive shanghai?

Please give me your identity card and money.

Problems in DM

- The objective function
 - Least dialog turns?

- The train data
 - Need a large amount of labeled data?

Why DBN

Need small amount of data

- Inference dependent on the training data
- Inference can rely on the dialogue history

The topology of DBN

Outline

- Task
- Problems in NLU
- FST in NLU
- Problems in DM
- DBN in DM
- The whole system
- Conclusion

Dialogue management

- Object
 - The system response (system act)
- Factors should be considered
 - The dialog history (system state)
 - The user utterance (user act)

Dialogue management

- Object
 - The system response (system act)
- Factors should be considered
 - The dialog history (system state)
 - ▶ The user utterance (user act)

The DBN Model

A labeled dialog

```
<1><usr><3><你们有货币兑换业务吗>
<1><state><0,0,0,0,0,0,0,>
<1><sys><7><这里有货币兑换业务>
<2><usr><12><我想把美元兑换成人民币。当前的兑换率是多少>
<2><state><1,1,0,0,0,0,>
<2><sys><11><一百美元兑换六百零九元人民币>
<3><usr><8><我想兑换四百美元现金>
<3><state><1,1,0,1,0,0,>
<3><sys><2><好的请稍等>
<4><usr><15><NULL>
<4><state><1,1,0,1,0,0,>
<4><$v$><3><请填一下表>
<5><usr><9><好>
<5><state><1,1,0,1,1,0,>
<5><sys><1><给你钱请拿好>
<6><usr><7><谢谢>
<6><state><1,1,0,1,1,1,>
<6><sys><5><不客气>
```


DBN model

```
<1><usr><3>
<1><state><0,0,0,0,0,0,0,>
                                              DBN model 1
<1><sys><7>
<2><usr><12>
<2><state><1,1,0,0,0,0,>
<2><sys><11>
<3><usr><8>
<3><state><1,1,0,1,0,0,>
<3><sys><2>
<4><usr><15>
                                         P(a_t \mid s_t, u_t)
<4><state><1,1,0,1,0,0,>
<4><sys><3>
<5><usr><9>
<5><state><1,1,0,1,1,0,>
<5><sys><1>
<6><usr><7>
<6><state><1,1,0,1,1,1,>
<6><sys><5>
```


DBN model

DBN model

```
<1><usr><3>
<1><state><0,0,0,0,0,0,0,>
                                              DBN model 3
<1><sys><7>
<2><usr><12>
<2><state><1,1,0,0,0,0,>
<2><sys><11>
<3><usr><8>
<3><state><1,1,0,1,0,0,>
<3><sys><2>
<4><usr><15>
<4><state><1,1,0,1,0,0,>
                                               P(a_{t} | u_{t})
<4><sys><3>
<5><usr><9>
<5><state><1,1,0,1,1,0,>
<5><sys><1>
<6><usr><7>
<6><state><1,1,0,1,1,1,>
<6><sys><5>
```


Experiments on DM

		DBN		MDP
	$P(a_t s_t,u_t)$ I	$P(a_t s_{t-1},s_t)$	$(u_t, u_t) P(a_t u_t)$	$P(a_t s_t,u_t)$
precision	$\bigcirc 90.58\%$	89.13%	88.41%	81.88%

Experiments on DM

		DBN		MDP
	$P(a_t s_t,u_t)$	$P(a_t s_{t-1},s_t,u)$	$I_t) P(a_t u_t)$	$P(a_t s_t,u_t)$
precision	(90.58%)	89.13%	88.41%	81.88%

Outline

- Task
- Problems in NLU
- FST in NLU
- Problems in DM
- DBN in DM
- The whole system
- Conclusion

The structure of our spoken dialogue system

A user survey of the spoken dialogue system

user types	total dialogues	dialogues end with satisfaction
researcher	30	27
ordinary user	30	22

Outline

- Task
- Problems in NLU
- FST in NLU
- Problems in DM
- DBN in DM
- The whole system
- Conclusion

Conclusion

- FST model can be competent for NLU
 - The model can be modified easily when data increase
 - The labeled data can be used in other dialogue scene
- DBN model performs great in DM
 - It needs a little mount of data
 - ► The training is fast

THANKS!